
Thunk Update
Last month’s issue featured a fairly hefty article on
calling 16-bit code from applications running in
Windows 95 (NT doesn’t support doing this). One
important thing I missed was to mention that Roy
Nelson of Borland’s European Technical Team was
responsible for a lot of the groundwork for the code in
that article – many thanks Roy!

The article suggested you write (small) snippets of
code to do the actual job of calling the target routines.
If assembler worries you, then fear not. Since writing
the article I’ve been doing some homework and have
come up with a way of getting the same effect without
writing any assembler at all. It all revolves around a
routine that does all the assembler for you.

It works out the details of all the parameters and
calling conventions, including the troublesome point-
ers. The only problem with Call16BitRoutine is that it
will be slower than doing a direct assembler routine.
This is due to the amount of code required to take
account of all the relevant possibilities: it stretches to
over 100 lines of code. If efficiency is not a major factor,
this function may be a viable option.

Call16BitRoutine can handle routines that take any
1, 2 or 4 byte ordinal parameters and also any pointer
parameters (which caters for routines that take var and
structured const parameters). It also deals with any
function return value that is a 1, 2 or 4 byte ordinal, or
a pointer. The function’s declaration looks like this:

function Call16BitRoutine(
 Name: String; DllHandle: THandle16;
 Convention: TConvention; Args: array of const;
 ArgSizes: array of Integer): Longint;

The idea is that you are still responsible for loading and
freeing the DLL with LoadLibrary16 or LoadLib16 and
FreeLibrary16 as discussed before, and you pass in the
routine name and the DLL handle. The example project
used last time was QTTEST.DPR. This month, a new
version, QTTEST2.DPR, is supplied on the disk that
uses the routine. The program loads the 16-bit DLL in
one of its units’ initialisation sections and frees it in the
corresponding finalisation section. Note that you have
to be careful doing this: remember that the platform
check discussed last month happens in one of the other
units’ initialisation sections. It is important to ensure
the platform check occurs before the library is loaded.
Some sensibly placed breakpoints can verify things are
working (or not).

To specify the calling convention you also pass a
value of ccPascal or ccCDecl (values defined in an enu-
merated type called TConvention). The parameters are
passed in as an open array. For non-pointers, you pass
the relevant value. For var and structured const pa-
rameters, pass the address of the variable. For pointer
parameters, pass the appropriate pointer value. In
order for Call16BitRoutine to push the correct number
of bytes onto the stack, you also need to specify how
many bytes each parameter takes. Without this, the
implicit type promotion would cause havoc. In the case
of non-pointers, pass the number of bytes the parame-
ter is defined to take up. For pointers (which are all four
bytes in size), the number you specify should be the
number of data bytes the pointer points to.

If no parameters are required, pass a zero in the
argument array, and also a zero in the argument size
array.

The function return value is a Longint, so it may need
typecasting to an appropriate type, or you may need to
read the low word or perhaps just the low byte.
QTTEST2.DPR calls all the same 16-bit DLL routines as
QTTEST.DPR (supplied as well, for comparison) but
using Call16BitRoutine. Listing 1 shows a few of the
button OnClick handlers from the project: the parame-
ter-less Pascal procedure, the two parameter Pascal
procedure, the two parameter C function and the func-
tion that takes a PChar and returns a PChar. Refer back
to Issue 12 for details of the 16-bit DLL routines.

When using Call16BitRoutine, here are a few salient
points to bear in mind:

1. When passing a PChar, or string pointer, remember
that its size will be one more than its length (to take
into account the terminating zero byte, or length byte
respectively).

2. If the function returns a pointer, remember it will
be a 16-bit pointer. Pass it to Ptr16To32Fix before
reading from it, and to Ptr16To32Unfix afterwards.

3. To make the availability of the 16-bit DLL as exten-
sive as possible, QTTEST2.DPR loads it and unloads it

Tips
& Tricks

Call16BitRoutine(
 ’NoParameters’,DllHandle,ccPascal,[0],[0]);
...
Call16BitRoutine(
 ’Proc2ParamsPascal’, DllHandle, ccPascal,
 [5, 20], [SizeOf(Longint), SizeOf(Longint)]);
...
ShowMessage(Format(’Sum of parameters = %d’,
 [Call16BitRoutine(’Func2ParamsC’, DllHandle,
 ccCdecl, [5, 20], [SizeOf(Longint),
 SizeOf(Longint)])]));
...
var
 ReturnedMsg: PChar;
const
 Msg: PChar = ’32-bit call’;
...
ReturnedMsg := PChar(Call16BitRoutine(
 ’FuncPointerParam’, DllHandle, ccPascal, [Msg],
 [Succ(StrLen(Msg))]));
ShowMessage(Format(’Msg received from 16-bit: %s’,
 [StrPas(Ptr16To32Fix(ReturnedMsg))]));
Ptr16To32Unfix(ReturnedMsg);

➤ Listing 1

September 1996 The Delphi Magazine 61

in a unit initialisation and finalisation section. If you do
likewise you need to be careful about the order of
execution of initialisation sections. If this call to
LoadLibrary16 occurs before the QTThunkU unit initialisa-
tion section’s platform check, then your program may
terminate with an unpleasant OS error, instead of the
intended exception message (if running under NT).

4. When dealing with PChars returned from 16-bit
DLLs, translate them into String types before passing
them to the Format family of routines (as done in Listing
1). If you leave them as PChars, for some reason
Windows 95 can experience certain problems.

Contributed by Brian Long

Automatic Initialisation And Finalisation
I recently found myself writing a unit for re-use by other
programmers that required initialisation before any
calls could be made to the unit, and clean-up (freeing
resources etc) after they had finished with it. There is
an easy way to make this automatic, with no coding
required by the user programmers. In Delphi 2, you can

unit Unit1;
interface
{ Your code }

implementation
{ more code }

procedure MyInitProc;
begin
end;

procedure MyCleanupProc;
begin
end;

initialization
 { Any amount of code can go here, but calling a
 procedure looks neater, eg: }
 MyInitProc;

finalization
 { Any amount of code can go here too, but calling
 a procedure looks neater, eg: }
 MyCleanupProc;
end.

➤ Listing 2

put code in the initialization and finalization sec-
tions (note the strange American spelling) as shown in
Listing 2. The initialization code gets executed as
soon as the unit is created, and the finalization code
as it is destroyed. However, Delphi 1 doesn’t have a
finalization section. One possible solution is to call
the SysUtils routine AddExitProc, as shown in Listing 3.
This adds the given procedure to the run-time library’s
exit procedure list, so when an application terminates
its exit procedures are executed in reverse order of
definition. You can pass any procedure (not function)
as its parameter, but it cannot have any parameters
and must be declared far.

Contributed by Jim Cooper, CompuServe 101641,440

Easy Word Wrapping
Ever wanted to wrap text in a grid cell or component
that doesn’t normally support it? Worried about calcu-
lating text size, which words to wrap at and all that
stuff? Well, there is an easier way: use the Windows API
routine DrawText. The Delphi help contains information
on all the flags available, but the important one to note
is DT_WORDBREAK. Use or combine any of the flags you
require. Listing 4 shows an example of a TStringGrid
OnDrawCell event handler that will wrap text. The grid
has DefaultDrawing set to True, by the way. You could
easily build this behaviour into a descendant compo-
nent, of course. Remember to put WinTypes and WinProcs
in a uses clause, if they aren’t there already.

Contributed by Jim Cooper, CompuServe 101641,440

Many thanks to those who have contributed
Tips for this column and are waiting patiently
to see them appear in print! We’ve been tight
for space recently so haven’t been able to
include as many as we’d like to, but will do
our best to expand Tips & Tricks in subsequent
issues, so please do keep them coming in!

unit Unit1;
interface
{ Your code }

implementation
uses SysUtils; { You need this }
{ more code }

procedure MyInitProc;
begin
end;

procedure MyCleanupProc; far;
 { This must be declared far }
begin
end;

initialization
 { Any amount of code can go here, but calling a
 procedure looks neater, eg: }
 MyInitProc;
 AddExitProc(MyCleanupProc);
end.

➤ Listing 3

procedure TForm1.MyGridDrawCell(
 Sender: TObject; Col, Row: Longint; Rect: TRect;
 State: TGridDrawState);
var
 TextStr : array[0..255] of Char;
begin
 { Because DefaultDrawing is set to True, the cell
 will actually be drawn once, so call FillRect to
 blank it out. This may seem like more work, but in
 fact everything like setting the font, pen and
 brushes is set this way, so all the text drawing
 is simpler as none of this behaviour needs to be
 reproduced here. }
 MyGrid.Canvas.FillRect(Rect);
 StrPCopy(TextStr, MyGrid.Cells[Col, Row]);
 Rect.Top := Rect.Top+2; {Adjust for looks}
 DrawText(MyGrid.Canvas.Handle, TextStr,
 StrLen(TextStr), Rect,
 DT_CENTER or DT_NOPREFIX or DT_WORDBREAK);
end;

➤ Listing 4

62 The Delphi Magazine Issue 13

	Thunk Update
	Automatic Initialisation And Finalisation
	Easy Word Wrapping

